
BDI on Mobile

2

Colophon

BDI on Mobile

Authors
Nick Arema (CGI)
Sara Larsson(CGI)

© Connekt
January 2025

basic data
infrastructure

3

Summary

This document explores the possibility of integrating mobile devices in the BDI framework
(www.bdinetwork.org). The BDI framework aims to facilitate flexible and controlled data exchanges
in professional operational environments like logistics.

Such a framework traditionally is designed for applications on stable server environments.

The research investigates the challenges and potential solutions to integrate mobile platforms in the
framework while maintaining key principles like data sovereignty, security, and performance. Mobile
platforms are prevalent in operational environments such as truck-drivers on the road.

A proof of concept (PoC) was developed to test key aspects, such as connectivity, resource usage,
and compatibility with mobile constraints like battery life and network stability.

The findings indicate that while there are challenges due to hardware limitations and mobile-specific
requirements (e.g. app store guidelines, battery constraints and internet variability), it is feasible to
use mobile devices in het BDI framework. Initial tests demonstrated promising results in terms of
performance metrics like app launch time, battery consumption, and frame rate, though further
testing with more complex scenarios and larger client bases is recommended.

3

https://www.bdinetwork.org/

4

Contents

1.	 Introduction	 5

2.	 Investigations	 6
	 2.1	 Desk research	 6
	 2.2	 Architecture	 9

3.	 Results Proof of Concept	 10
	 3.1	 Metrics (KPI’s)	 10
	 3.2	 SW Development (tools)	 10
	 3.3	 Results	 10
	 3.4	 Observations	 12

4.	 Recommendations	 13

4

5

Introduction

This document explores the possibility of integrating mobile devices in the BDI framework
(www.bdinetwork.org). The BDI framework aims to facilitate flexible and controlled data exchanges
in professional operational environments like logistics.

Typically applications using the BDI framework are designed to operate efficiently in environments
with reliable and stable infrastructure, such as centralized or cloud-based servers connected via secure
networks. These infrastructures ensure robust data exchange, manage access control, and provide
consistent availability of resources.

However, the question arises: can this same BDI framework be applied in mobile environments?
Specifically, could a mobile phone-based application be established where different clients can
exchange information, all while maintaining the key principles.

Mobile platforms are prevalent in operational environments such as truck-drivers on the road.

This introduces new challenges related to network reliability, security, and scalability. This exploration
will focus on whether mobile devices can effectively operate within a BDI framework ecosystem while
maintaining the integrity and trustworthiness of data exchange. We will investigate the challenges and
solutions necessary to achieve this.

1

https://www.bdinetwork.org/

6

Investigations

2.1 Desk research
The desk research consists of finding the differences between a server and a mobile phone, what
complications come with these differences and how to solve these problems.
The following aspects are key differences between a server and a mobile phone:

Power budget
A mobile phone relies on battery power for most of the time, while a server only relies on battery power
in rare emergency situations. This puts a constraint on the amount of power that can be consumed by a
mobile application. Therefore, when developing the mobile app, the power consumption must be taken
into consideration.

Internet connection
Servers have a stable internet connection, as they are connected via a physical cable. Additionally, the
firewall rules can be configured by the manager of the internet connection. A mobile phone on the other
hand is always wirelessly connected to the internet, which results in occasional dropouts due to a loss
of signal. Additionally, the owner of the mobile device rarely has control over the firewall settings, as
this is managed by carriers of public wifi providers.

Memory and CPU
While the memory and CPU capacity in mobile phones has increased significantly over the past years,
it is generally less than what a server is generally equipped with. Additionally, a constantly high CPU
usage also has an impact on the battery life.

Application distribution
Applications on mobile phones are generally installed via an Application store (App-store or Play-store).
These marketplaces pose requirements on the apps that are downloadable from here. Distribution
channels for applications towards servers rarely pose any requirements on the application.

Concurrency handling
A server is a lot better in concurrency handling because it is a lot more powerful compared to a mobile
phone, but in this case this is not expected to be a problem because the mobile phone won’t be the
device running the dataspace. All it will do is sending basic messages for limited use cases.

Security
Looking at security, there is not a big difference between using a mobile phone or a server. Furthermore,
no other security threats were found.

2

7

Applications using the BDI framework on mobile phones
Given the differences between servers and mobile phone applications, it is not possible to simply
translate the existing BDI based implementations to a mobile application. Primarily the challenges
around internet connectivity and the lack of control over the firewall settings prevent the reuse of
existing implementations.

The main components of the BDI implementation as used is composed out of an API, and Apache
Pulsar. A number of existing frameworks, libraries and technologies have been evaluated in order to
discover if these can assist in tackling the challenges related to switching to Mobile.

Peer-to-Peer Frameworks

Framework	 Pros	 Cons

Libp2p	 Modular and highly flexible; built-in NAT 	 Complex setup; limited official C# support

	 traversal, peer discovery, and encryption;	 (community-driven implementations exist).

	 ideal for decentralized, scalable apps.	

ZeroMQ	 Lightweight, flexible; supports PUB-SUB 	 No built-in NAT traversal or peer discovery;

	 and PUSH-PULL patterns; suitable for	 requires manual network handling.	

	 low-latency, real-time messaging.	

WebRTC	 Low latency; built-in NAT traversal	 Complex setup (requires signaling servers);

	 (via STUN/TURN); ideal for real-time 	 browser-focused but adaptable.

	 media or data transfer.	

LiteNetLib	 Lightweight, efficient, supports NAT 	 Limited features compared to other frameworks;

	 punchthrough; optimized for low-latency	 requires manual network management.

	 game networking.	

gRPC	 Strongly typed; Protocol Buffers for binary	 Difficult to adapt for P2P; lacks native NAT	

	 communication; supports bi-directional	 traversal.

	 streaming for real-time data.	

Akka.NET	 Scalable, fault-tolerant actor-based model;	 Heavy framework; overhead can be excessive

	 supports clustering and load distribution.	 for small-scale P2P projects.

8

Broker based Frameworks

Framework	 Pros	 Cons

ASP.NET Core	 Fully supported in .NET; simplifies	 Overkill for simple use cases; additional layers

SignalR	 realtime communication; built-in	 may consume more resources.

 	 features like message broadcasting

	 and group management.	

WebSockets4Net	 Lightweight, easy integration into	 Lacks high-level features like SignalR; requires

	 .NET MAUI apps; suitable for basic	 manual connection management.

	 WebSocket functionality.	

Socket.IO (C#)	 Feature-rich; ideal for event-driven apps	 Primarily Node.js server-side; less integrated

	 (chats, notifications); supports fallback	 with .NET ecosystem.

	 protocols if WebSocket unavailable.	

Fleck	 Lightweight, simple WebSocket server	 No advanced features like message routing

	 for .NET; minimal overhead for basic	 or reconnection handling; infrequently 	

	 functionality.	 updated.

SuperSocket	 Modular design; supports WebSockets	 More setup and configuration needed

	 and other protocols; strong community	 compared to simpler frameworks like Fleck.

	 support.	

Apache Pulsar	 Supports many client languages, and a 	 Initial server setup is complex.

	 iSHARE authentication plugin is available.	

The desired option is one that can handle Network Address Translation (NAT), and that can cache
data on server, in order to overcome temporary loss of signal.

From the framework analysis it was learned that most peer to peer frameworks rely on open ports,
while a couple support mechanisms with a relay server to connect clients behind a NAT. It became
also apparent that the number of actively supported client programming languages differs significantly
between frameworks. The final realization is that none of the evaluated frameworks were worthwhile
to use in favor of the existing BDI component with Apache Pulsar over Websockets.

9

2.2 Architecture
A PoC has been developed, in order to prove that technology related to BDI is possible to run on
mobile. Additionally the PoC will be used as a tool to do measurements on the concerns mentioned
previously (battery, performance, connectivity, etc.). For this PoC a simple mobile app with the
functionality to receive and send messages is implemented.

The PoC has been developed in .NET MAUI, a Microsoft framework allowing to build multi-platform
apps. Benefit is that this framework uses C# as a base, meaning some existing functionality can be
reused. One negative aspect of .NET MAUI is that it might have slightly higher performance overhead
and application size, but for a simple application such as this PoC it does not make a difference.

Websockets are used to set up connection to Pulsar. Websockets are used since this has already
been proven to work, and there are examples which can be used as base.

Authentication is done using iSHARE, in the future it might be possible to use OAuth, but that
functionality is not yet ready. To use iSHARE a token needs to be uploaded to the application, in the
PoC there will be a default token, and no action is needed from the user, but this needs to be kept
in mind for a full-scale project.

The PoC is not published on the app stores, but the support of .NET MAUI does make this possible,
so it is something which could be done for a full-scale project.

Publisher
Mobile application

Services

Pulsar Publish
Client websocket

iSHARE cert iSHARE cert
Obtain
access
token

Obtain
access
token

Actor Actor

Pulsar Subscribe
Client websocket

Pulsar Authorisation
registry

Association
registry

DNS

Subscriber

10

Results Proof of Concept

3.1 Metrics (KPI’s)
In addition to proving that the technology works on mobile, the goal is also to benchmark the application
to see if it is feasible for users to use this application.

The following KPIs are commonly used, and suggestions to aim for. These will be used as comparison
point for the PoC.
•	 App launch time: max 2 seconds (2).
•	 Frame rate: min 30 fps.
•	 Memory usage: 300MB (4).
•	 Battery consumption: around 5% per hour (1).
•	 Data usage: around 50MB per hour (3).
•	 Offline functionality: App can handle drops in connectivity .

Sources:
1.	 Energy consumption of the 30 most popular mobile apps in the world - Greenspector.
2.	 Get your App Performance Score | App quality | Android Developers.
3.	 How much data do I need? Is 1GB, 4GB, 8GB, 20GB, 50GB... enough data?
4.	 Do You Have the Right Amount of RAM? | Zebra Blog | Zebra.

3.2 SW Development (tools)
There are multiple tools which can be used to measure the performance of an application. The PoC
doesn’t have full functionality (think full UI, animations, etc), therefore the measurement provides a good
indication of the performance of the core functionality. We have used the following tools to analyze the
performance of the PoC.

•	 Android performance quiz: Get your App Performance Score | App quality | Android Developers.
•	 Android Studio Profiler: Profile your app performance | Android Studio | Android Developers.
•	 Visual Studio Profiler: Measure performance in Visual Studio | Microsoft Learn.

3.3 Results

3

Metric	 KPI	 Result

App launch time	 Max 2 seconds	 1.6 seconds

Frame rate	 Min 30 fps	 60 fps

Memory usage	 300MB	 350MB

Battery consumption	 Max 5% per hour	 3% per hour

Data usage	 50MB per hour	 Minimal

Offline functionality	 Can handle drops in connectivity	 Not implemented

11

To further analyze memory usage the PoC has been compared to a default MAUI application, the
default application has some UI elements and simple functionality. The memory usage of this default
application is 160MB showing that MAUI applications not inherently have a high memory footprint.

3-2: Memory usage of the BDI PoC, measured in Android Studio

3-3: Memory usage of a default MAUI application

3-1: Performance values of BDI PoC on Android device

12

3.4 Observations

Overall
When transforming an application that is made for a server to a mobile phone, there are a lot of things
that you should look into and really understand what the differences are. It is necessary to do a solid
research before starting the development of the app, so the developers know the main points of
importance to look at.

Feasibility
Looking at the results from the performance tests a BDI framework based application can function on
mobile without issues, most KPI’s were better than the target value, except for memory usage which
was slightly higher than preferred. There has not been any analysis on how to optimize the app, so it
should be possible to decrease the memory usage by taking this into account.
 

13

Recommendations

Use existing SDK’s
By reusing existing building blocks of Pulsar and standard client side websocket libraries only a very
small amount of custom code had to be written on the client side. Due to that it is not necessary to
create and offer a 'BDI on mobile SDK' for users, it is simple enough for users to implement in their
own ecosystems.

Expand the application
Expanding the application will test if the KPI’s will still hold while the app has more tasks to perform.
This will show if the groundwork of the app is proper or if changes will fully change the outcome of the
KPI’s.

Test multiple clients
The app has so far been tested with only small numbers of clients connecting simultaneously. It is
unclear how the system performs with tens or even hundreds of clients are connected at once. There is
a need to confirm whether the connections remain stable, whether every client can still send messages
to others, and whether the KPIs remain consistent under such conditions.

Authentication with OAuth 2.0
For the PoC the authentication is done with iSHARE, on mobile this is unintuitive, as the user needs
to upload a certificate to their phone to be able to authenticate in the application.
Implementing something like vanilla OAuth 2.0 would create a flow which is more recognizable for
the user.

5

14

BDI, Topsector Logistiek & DIL
Ezelsveldlaan 59 | 2611 RV Delft | +31 15 251 65 65
www.bdinetwork.org | www.topsectorlogistiek.nl | www.datainlogistics.org

