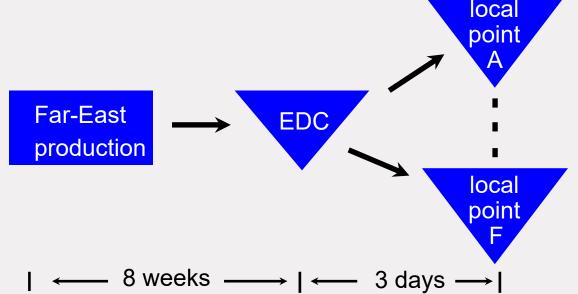
Are you ready for multi-echelon inventory optimization?

Ton de Kok – School of Industrial Engineering Rik Kusters - ChainStock

Agenda


- European Distribution Centers
- Safety Stocks in MRP I systems
- Collaborative Planning and MRP I
- Empirical validation of Supply Chain Optimization models
- ChainStock

European Distribution Centers

- In 1990 borders within EU vanished, allowing to store goods in a single location for multiple EU countries
- Philips Consumer Electronics produced audio products in the Far-East for the global market
- An EDC allowed for postponement of the allocation decision
- But how much to store in the EDC and how much to store in the sales organizations?
- To convince Audio SCM a quiz was designed, where two scenarios for weeks of stock allocation were proposed: (5,2) and (2,5)

Case: Inventory capital allocation

How to allocate inventory capital between European Distribution Centre and Regional Warehouses?

Scenario Definition

- EDC orders biweekly
- Regional warehouses order weekly
- 7 weeks of stocks to be allocated
- Required fill rate 95%
- Scenario 1
 - 5 weeks EDC
 - 2 weeks regional warehouses
- Scenario 2
 - 2 weeks EDC
 - 5 weeks regional warehouses

	Scenario 1 (5,2)	Scenario 2 (2,5)	Scenario 3 (1,3)	Scenario 4 (1,2)
Stock in weeks				
Regional fill rate				
EDC fill rate				

	Scenario 1 (5,2)	Scenario 2 (2,5)	Scenario 3 (1,3)	Scenario 4 (1,2)
Stock in weeks	7.1			
Regional fill rate	94%			
EDC fill rate	100%			

	Scenario 1 (5,2)	Scenario 2 (2,5)	Scenario 3 (1,3)	Scenario 4 (1,2)
Stock in weeks	7.1	7.1		
Regional fill rate	94%	100%		
EDC fill rate	100%	95%		

	Scenario 1 (5,2)	Scenario 2 (2,5)	Scenario 3 (1,3)	Scenario 4 (1,2)
Stock in weeks	7.1	7.1	4.1	
Regional fill rate	94%	100%	97%	
EDC fill rate	100%	95%	80%	

	Scenario 1 (5,2)	Scenario 2 (2,5)	Scenario 3 (1,3)	Scenario 4 (1,2)
Stock in weeks	7.1	7.1	4.1	3.1
Regional fill rate	94%	100%	97%	92%
EDC fill rate	100%	95%	80%	80%

European Distribution Centers

- In 1990 borders within EU vanished, allowing to store goods in a single location for multiple EU countries
- Philips Consumer Electronics produced audio products in the Far-East for the global market
- An EDC allowed for postponement of the allocation decision
- But how much to store in the EDC and how much to store in the sales organizations?
- To convince Audio SCM a quiz was designed, where two scenarios for weeks of stock allocation were proposed: (5,2) and (2,5)
- Thousands of professionals have been questioned between 1991 and 1999 about the best scenario, close to 90% failed to choose the right one
- Later the Fresh Connection articulated these findings

Safety Stocks in MRP I systems

- MRP I is a multi-item multi-echelon inventory management system
 - Logic
 - User interventions
- In 1990 it was unknown how to set safety stocks in MRP I systems
- In 1995 it became clear that it would be impossible to find mathematical formulas for this
 - MRP I logic yields infeasible order release decisions
 - Only manual intervention can create feasible solutions
 - No one knows how to translate manual interventions into formulas

Collaborative Planning and MRP I

- End of 1999 Philips Semiconductors SCM was looking for a Collaborative Planning process and tool for the High Volume Electronics supply chain
- SBS policies provided the basis for a highly efficient and effective planning solution
- Between 2001 and 2007 the process was executed on a weekly basis, generating about € 100M additional profit compared to other customer programs like VMI, and 100% customer service
- The CP logic developed was in fact an alternative for MRP I logic, the CP process an alternative for the MPS-MRP process
- As we speak the process is tested in an automotive setting, showing both the deficiencies of MRP I and the capability of material-constrained planning
- In 2017 DD-MRP was shown to be ineffective using a real-life case and discrete event simulation

Empirical validation of Supply Chain Optimization models

- The software based on SBS policies has been tested in a large number of real-life situations since 2000
- In some recent cases the software is assumed to produce reality, so that scenarios can be compared, and safety stocks can be determined across the multi-item multi-echelon supply chain
- Even though MRP I systems generate infeasible plans and humans intervene, using historical data on demand, average inventory, average lot sizes and supply chain performance, we find that the SBS-based software explains reality
- This suggests that average inventories and average lot sizes drive supply chain customer service

Key findings

- Getting the math right is a prerequisite for control
- Real multi-echelon planning and control eliminates the Bullwhip effect in supply chains
- In optimally designed supply chains, inventory capital concentrates at the CODP,
- And at item stocks of relatively low value and with relatively long lead times
- Apart from these decoupling points, materials should flow, using allocation and synchronization mechanisms
- It saves a lot of money, creates a lot higher service, and a lot less fire fighting
- But we need a new type of software to make this happen!

ChainStock Software for multi-echelon optimization

MULTI-ECHELON INVENTORY SOLUTIONS

Realistic, accurate and optimal

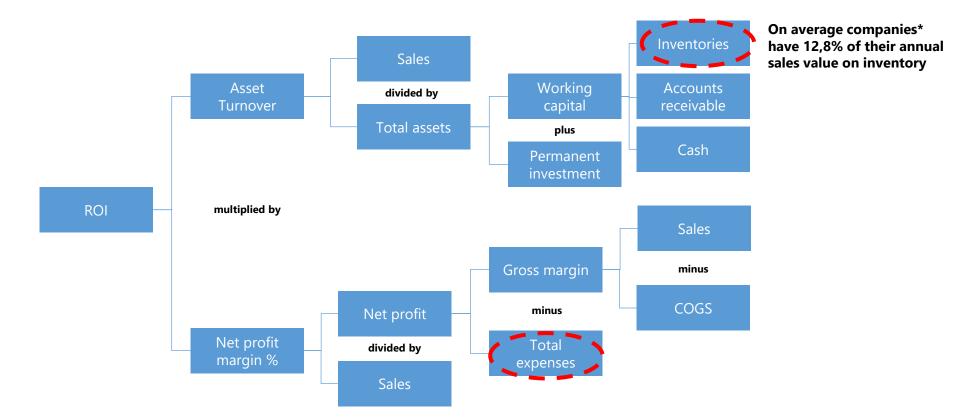
CHAINSTOCK

Mission: Empower companies to make material planning and inventory (control) a competitive advantage by providing them with innovative software, knowledge and adequate support.

Product: ChainStock is a software application offering multi-echelon inventory optimization and -control based on a mathematical model developed by Prof. Ton de Kok from University of Technology Eindhoven. By explicitly representing the supply chain, ChainStock can evaluate & optimize complex supply chain inventory- and service levels in seconds.

Why inventory?

- Strategic: trading, speculation and risk limitation
- Capacity: limited capacity requires stock build (e.g. seasonality)
 Order quantity: economic to order more than 1 pcs.
- Uncertainty: demand-, supply quantity and lead times
 Lead time: Coverage of lead time demand



Inventory Decision Making

Decisi	ions	Variables
Item in portfc	olio (yes/no)	Customer needs, profitability, supplementary, etc.
Make-To-Stock vs.	Make-To-Order	Production lead time, customer requirements, volatility
Where to inventory	(central vs. local)	Customer demand, volatility demand, transport costs
Stock Qu	uantity	Supplier lead time, demand characteristics
Order Quantity	Safety Stock	CHAIN STOCK SOL
	Item in portfo Make-To-Stock vs. Where to inventory Stock Qu	Decisions Item in portfolio (yes/no) Item in portfolio (yes/no) Make-To-Stock vs. Make-To-Order Where to inventory (central vs. local) Stock Quantity Order Quantity Safety Stock

Impact of inventory on Return On Investment

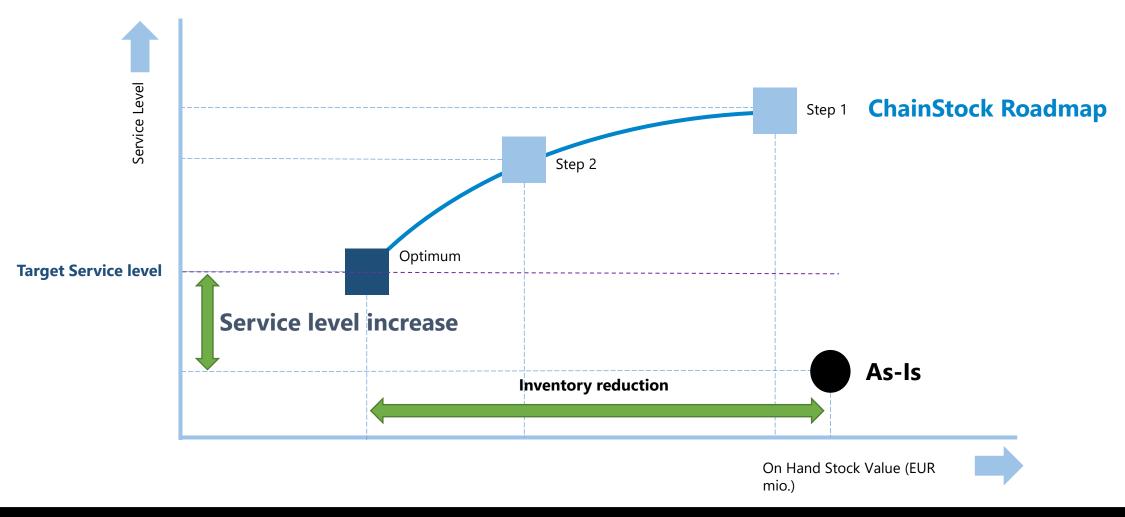
Inventory reduction results in an **increase** of **asset turnover** and **net profit margin**. Meaning that the **ROI** is leveraged from both sides. Efficient inventory (management) is a key issue to become an **industry leader**.

True Multi-Echelon Inventory Optimization

General Approach ChainStock Approach Inventory Value

► Echelon

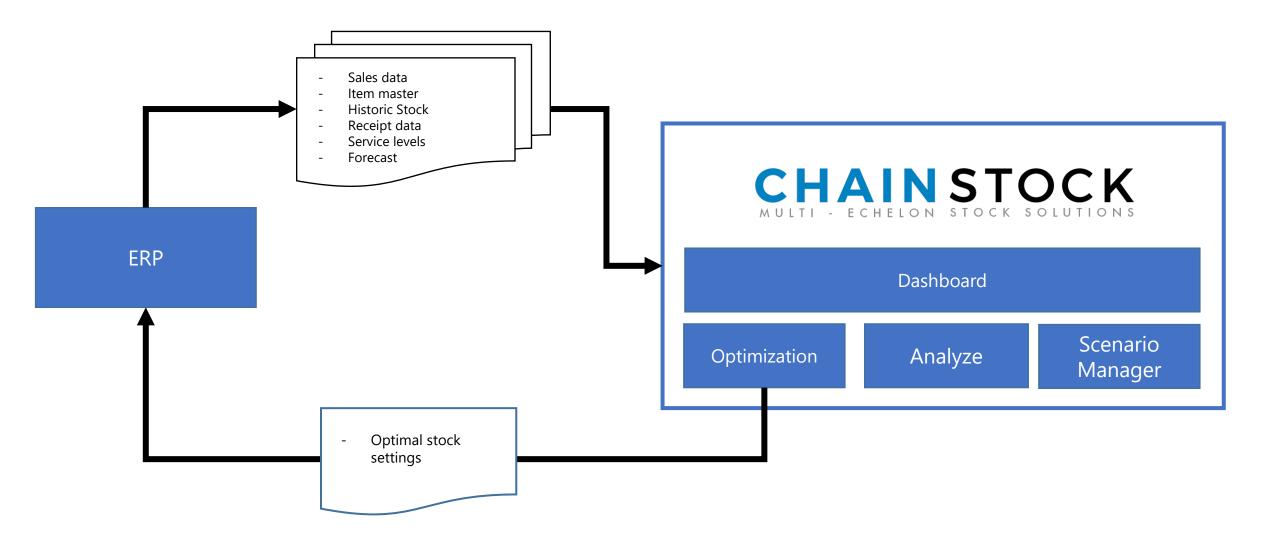
The application of ChainStock in general leads to inventory reductions in the range of 5-30%



Inventory management scale

	Level of professionalism in inventory management				
Symptoms	 Gut feeling inventory management Many back orders No idea about inventory quantities and service level 	 Days on inventory policies Excel based computations Inventory is monitored 	 Basic statistic inventory calculations (P1) based on historic demand ERP or Excel based computations Inventory is monitored 	 Demand and forecast planning S&OP processes Single echelon inventory optimization (P2) Inventory is monitored 	 Demand and forecast planning S&OP processes Multi-echelon inventory optimization Inventory specialist
Service level:	50-60%	60-80%	80-95%	Up to 99,9%	Up to 99,9%
Saving Potential:	Base Case	Limited	Moderate	High	Very High

Generate inventory optimization roadmaps



ChainStock vs. Single and multi-echelon

	Single Echelon*	Multi Echelon (e.g. SAP)	ChainStock
Optimization method	Calculation	Heuristics / Simulation	Optimization based on calculation
Accuracy	Very inaccurate	Inaccurate	Very accurate
Stock inefficiency	20-50%	5-25%	0%
Possibility to evaluate	No	No	Yes
Computation time	Several seconds	Several hours	Several seconds
Demand fitting	Normal distribution	Normal distribution	Gamma/Erlang distribution

Optimization method

10 | OPTIMIZATION METHOD

Why ChainStock?

- Evaluation: analyzing current and future supply chain strategy scenarios by determining service- and inventory levels on customer-, item- and location level using live data.
- Service level: increase of service level with same inventory value and an accurate and predictable performance.
- Increase of ROI: Reduction of inventory value and inventory costs.
- **Differentiation**: differentiation of CODP and service level on Product and Customer Combination level.
- Validated: the methodology has been applied and validated.

CHAIN STOCK SOLUTIONS

CHAIN STOCK SOLUTIONS